Discrimination of β -cyclodextrin/hazelnut (Corylus avellana L.) oil/flavonoid glycoside and flavonolignan ternary complexes by Fourier-transform infrared spectroscopy coupled with principal component analysis

Abstract The goal of the study was the discrimination of β-cyclodextrin (β-CD)/hazelnut (Corylus avellana L.) oil/antioxidant ternary complexes through Fourier-transform infrared spectroscopy coupled with principal component analysis (FTIR–PCA). These innovative complexes combine the characteristics of the three components and improve the properties of the resulting material such as the onsite protection against oxidative degradation of hazelnut oil unsaturated fatty acid glycerides. Also, the apparent water solubility and bioaccessibility of the hazelnut oil components and antioxidants can be increased, as well as the controlled release of bioactive compounds (fatty acid glycerides and antioxidant flavonoids, namely hesperidin, naringin, rutin, and silymarin). The appropriate method for obtaining the ternary complexes was kneading the components at various molar ratios (1:1:1 and 3:1:1 for β-CD hydrate:hazelnut oil (average molar mass of 900 g/mol):flavonoid). The recovering yields of the ternary complexes were in the range of 51.5–85.3% and were generally higher for the 3:1:1 samples. The thermal stability was evaluated by thermogravimetry and differential scanning calorimetry. Discrimination of the ternary complexes was easily performed through the FTIR–PCA coupled method, especially based on the stretching vibrations of CO groups in flavonoids and/or CO/CC groups in the ternary complexes at 1014.6 (± 3.8) and 1023.2 (± 1.1) cm...
Source: Beilstein Journal of Organic Chemistry - Category: Chemistry Authors: Tags: antioxidant cyclodextrin flavonoid hazelnut vegetable oil ternary supramolecular inclusion complex Full Research Paper Source Type: research