Phosphatidylinositol-3,4,5-trisphosphate interacts with alpha-synuclein and initiates its aggregation and formation of Parkinson ’s disease-related fibril polymorphism

AbstractLipid interaction with α-synuclein (αSyn) has been long implicated in the pathogenesis of Parkinson’s disease (PD). However, it has not been fully determined which lipids are involved in the initiation of αSyn aggregation in PD. Here exploiting genetic understanding associating the loss-of-function mutation in Synapt ojanin 1 (SYNJ1), a phosphoinositide phosphatase, with familial PD and analysis of postmortem PD brains, we identified a novel lipid molecule involved in the toxic conversion of αSyn and its relation to PD. We first established a SYNJ1 knockout cell model and found SYNJ1 depletion increases the acc umulation of pathological αSyn. Lipidomic analysis revealed SYNJ1 depletion elevates the level of its substrate phosphatidylinositol-3,4,5-trisphosphate (PIP3). We then employedCaenorhabditis elegans model to examine the effect of SYNJ1 defect on the neurotoxicity of αSyn. Mutations in SYNJ1 accelerated the accumulation of αSyn aggregation and induced locomotory defects in the nematodes. These results indicate that functional loss of SYNJ1 promotes the pathological aggregation of αSyn via the dysregulation of its substrate PIP3, leading to the aggravation of αSyn-mediated neurodegeneration. Treatment of cultured cell line and primary neurons with PIP3 itself or with PIP3 phosphatase inhibitor resulted in intracellular formation of αSyn inclusions. Indeed, in vitro protein–lipid overlay assay validated that phosphoinositides, especially PIP3, stron...
Source: Acta Neuropathologica - Category: Neurology Source Type: research