TMT proteomics analysis of cerebrospinal fluid from patients with cerebral venous sinus thrombosis

J Proteomics. 2023 Jan 13:104820. doi: 10.1016/j.jprot.2023.104820. Online ahead of print.ABSTRACTCVST is a type of venous stroke that mainly affects young adults with no reliable diagnostic markers and effective treatment strategies for secondary pathologies. However, the underlying pathological molecular mechanisms remain unclear. Here, we systematically analyzed the molecule profiling of the cerebrospinal fluid (CSF) in CVST patients via tandem mass tag (TMT)-based proteomics for the first time, aiming to reveal the pathogenesis and provide evidence for the diagnosis and treatment of CVST. Five CVST patients and five control patients were selected, and CSF samples were analyzed by TMT proteomics. Differentially expressed proteins (DEPs) were acquired and bioinformatics analysis was performed. Besides, parallel reaction monitoring (PRM) was utilized to validate the DEPs. 468 differentially expressed proteins were screened, 185 of which were up-regulated and 283 were down-regulated (fold change >1.2, P < 0.05). Bioinformatics analysis displayed that these proteins were significantly enriched in multiple pathways related to a variety of pathophysiological processes. PRM verification showed that apolipoprotein E, MMP-2, neuroserpin, clusterin, and several other molecules were down-regulated. These identified proteins reveal unique pathophysiological characteristics secondary to CVST. Further characterization of these proteins in future research could enable their applica...
Source: Journal of Proteomics - Category: Biochemistry Authors: Source Type: research