The Mobility of the Cap Domain Is Essential for the Substrate Promiscuity of a Family IV Esterase from Sorghum Rhizosphere Microbiome

In this study, the microbial community of the Sorghum bicolor rhizosphere was spiked with technical cashew nut shell liquid, and after incubation, the environmental DNA (eDNA) was extracted and subsequently used to build a metagenomic library. We report the biochemical features and crystal structure of a novel esterase from the family IV, EH0, retrieved from an uncultured sphingomonad after a functional screen in tributyrin agar plates. EH0 (optimum temperature [Topt], 50°C; melting temperature [Tm], 55.7°C; optimum pH [pHopt], 9.5) was stable in the presence of 10 to 20% (vol/vol) organic solvents and exhibited hydrolytic activity against p-nitrophenyl esters from acetate to palmitate, preferably butyrate (496 U mg-1), and a large battery of 69 structurally different esters (up to 30.2 U mg-1), including bis(2-hydroxyethyl)-terephthalate (0.16 ± 0.06 U mg-1). This broad substrate specificity contrasts with the fact that EH0 showed a long and narrow catalytic tunnel, whose access appears to be hindered by a tight folding of its cap domain. We propose that this cap domain is a highly flexible structure whose opening is mediated by unique structural elements, one of which is the presence of two contiguous proline residues likely acting as possible hinges, which together allow for the entrance of the substrates. Therefore, this work provides a new role for the cap domain, which until now was thought to be an immobile element that contained hydrophobic patches involved in subs...
Source: Applied and Environmental Microbiology - Category: Microbiology Authors: Source Type: research