Mesenchymal stem cells ameliorate cisplatin-induced acute kidney injury via let-7b-5p

AbstractAcute kidney injury (AKI) is a clinically common kidney disease. Age is an important factor that contributes to the susceptibility to AKI. Mesenchymal stem cells (MSCs) are a promising therapy for AKI, and miRNAs in exosomes (Exos) derived from MSCs are an important aspect of MSC treatment. However, the therapeutic effect of miRNA from MSC-derived Exos on AKI and the related mechanism have not been fully clarified. Whether there is a relationship between the mechanisms of senescence for AKI susceptibility and the therapeutic effect of MSCs has not been studied. We compared the degree of cisplatin-induced AKI injury in young and elderly mice and investigated changes in the expression of p53 and markers of DNA damage and apoptosis, which are important in both senescence and AKI. Ageing mice exhibited increased expression of p53 and pro-apoptosis markers. Upregulation of the senescence-associated DNA damage/p53 pathway may be an important susceptibility factor for cisplatin-induced AKI. Treatment with MSCs can reduce the degree of DNA damage and suppress p53 expression and apoptosis. Upon screening for differentially expressed miRNAs, let-7b-5p levels were found to be lower in aged mice than in young mice, and MSC treatment increased let-7b-5p levels. The presence of let-7b-5p in MSC-derived Exos alleviates tubular epithelial cell apoptosis by inhibiting p53, which reduces DNA damage and apoptosis pathway activity. Let-7b-5p downregulation may lead to increased renal AKI...
Source: Cell and Tissue Research - Category: Cytology Source Type: research