Purpurogallin Reverses Neuronal Apoptosis and Enhances "M2" Polarization of Microglia Under Ischemia via Mediating the miR-124-3p/TRAF6/NF- κB Axis

This study aimed at investigating the role of PPG on microglial polarization post ischemic stroke as well as the underlying mechanism. Mouse hippocampal neurons HT-22 and microglial BV2 cells were treated by oxygen and glucose deprivation to simulate an in-vitro ischemia model. qRT-PCR and ELISA examined expression of cytokines in microglia. CCK8 and flow cytometry measured HT-22 cell viability and apoptosis, respectively. The levels of miR-124-3p and TRAF6/NF-κB were determined. A mouse cerebral ischemia model was set up using middle cerebral artery occlusion (MCAO) method. After being dealt with PPG, the neurological functions, brain edema, neuronal apoptosis, and microglia activation of the mice were evaluated. As suggested by the results, PPG transformed "M1" to "M2" polarization of BV2 cells, and abated HT-22 cell apoptosis. PPG enhanced the neurological functions, alleviated brain edema, and decreased neuroinflammatory responses, and neuronal apoptosis in the brain lesions of MCAO mice. Furthermore, PPG enhanced miR-124-3p and repressed the TRAF6/NF-κB pathway. miR-124-3p suppressed the TRAF6/NF-κB pathway by targeting TRAF6. Collectively, PPG alleviates ischemia-induced neuronal damage and microglial inflammation by modulating the miR-124-3p/TRAF6/NF-κB pathway.PMID:36131212 | DOI:10.1007/s11064-022-03752-4
Source: Neurochemical Research - Category: Neuroscience Authors: Source Type: research