Influence of MDR1 gene polymorphism (2677G>T) on expression and function of P-glycoprotein at the blood-brain barrier: utilizing novel P-glycoprotein humanized mice with mutation

P-glycoprotein, the encoded product of the MDR1/ABCB1 gene in humans, is expressed in numerous tissues including brain capillary endothelial cells and restricts the distribution of xenobiotics into the brain as an efflux pump. Although a large number of single nucleotide polymorphisms in the MDR1 gene have been identified, the influence of the nonsynonymous 2677G>T/A single nucleotide polymorphism on P-glycoprotein at the blood-brain barrier has remained unclear. In the present study, we developed a novel P-glycoprotein humanized mouse line carrying the 2677G>T mutation by utilizing a mouse artificial chromosome vector constructed by genetic engineering technology and we evaluated the influence of 2677G>T on the expression and function of P-glycoprotein at the blood-brain barrier in vivo. The results of this study showed that the introduction of the 2677G>T mutation does not alter the expression levels of P-glycoprotein protein in the brain capillary fraction. On the other hand, the brain penetration of verapamil, a representative substrate of P-glycoprotein, was increased by the introduction of the 2677G>T mutation. These results suggested that the 2677G>T single nucleotide polymorphism may attenuate the function of P-glycoprotein, resulting in increased brain penetration of P-glycoprotein substrates, without altering the expression levels of P-glycoprotein protein in the blood-brain barrier. This mutant mouse line is a useful model for elucidating the influence of an MDR1 g...
Source: Pharmacogenetics and Genomics - Category: Genetics & Stem Cells Tags: Short Communication Source Type: research