Induction of ICAM1 in Brain Vessels is Implicated in an Early AD Pathogenesis by Modulating Neprilysin

This study investigated the effect of ICAM1 on amyloid-degrading enzymes (ADEs) in endothelial cells and their potential involvement in inflammation and AD progression. TNF-α treatment increased ICAM1 in human brain microvascular endothelial cells (HBMVECs) but decreased the nepr ilysin (NEP) protein level. Knock-down of ICAM1 using siRNA enhanced NEP, which increased the degradation of amyloid-β. In the brains of 4-month-old AD transgenic mice (APPswe/PSEN1dE9), there were significantly higher levels of ICAM1 expression and amyloid deposits but lower levels of NEP and insu lin-degrading enzymes (IDE), demonstrating an inverse correlation of ICAM1 with NEP and IDE expression. Further studies demonstrated significantly increased GFAP protein levels in the brain, specifically localized near blood vessels, of both TNF-α-injected and 4-month-old AD transgenic mice. Taken together, the induction of ICAM1 in endothelial cells suppresses NEP expression, accelerating the accumulation of amyloid-β in blood vessels. It also enhances leukocyte adhesion to blood vessels stimulating the migration of leukocytes into the brain, subsequently triggering brain inflammation.
Source: NeuroMolecular Medicine - Category: Neurology Source Type: research
More News: Alzheimer's | Brain | Neurology | Study