Preparation and characterization of a self ‐crosslinking sodium alginate‐bioactive glass sponge

AbstractIn this research, bioactive glass particles prepared by the reactive flash nanoprecipitation method (RFNP-BG particles) are used to crosslink sodium alginate to prepare biological sponges (SA-BG sponges) by freeze-drying. An experiment for the cross-linking mechanism confirms that the continuous release of Ca2+ from RFNP-BG is promoted by the crosslinking reaction and in turn leads to the gelation process of SA. Bioactive glass particles not only provide Ca2+ for the crosslinking of sodium alginate, but also enhance the mechanical properties of the SA-BG sponges. The results show that the elastic modulus of the SA-BG sponges increases from 0.026  MPa to 0.641 MPa, and the resistance to external force deformation is greatly improved; the thermal decomposition temperature increases from 105°C to 166°C; compared with a pure SA sponge, the water resistance is significantly improved. In vitro cell experiments show that the SA-BG sponges ha ve a certain adverse effect on cell proliferation, but it is in an acceptable range. qPCR results show that the SA-BG sponges have a certain beneficial effect on promoting osteogenic gene expression. The SA-BG sponges have great application potential in the fields of medicine, hemostasis, and wound closure.
Source: Journal of Biomedical Materials Research Part B: Applied Biomaterials - Category: Materials Science Authors: Tags: RESEARCH ARTICLE Source Type: research