Filtered By:
Source: Biomaterials
Condition: Multidrug Resistance

This page shows you your search results in order of date.

Order by Relevance | Date

Total 3 results found since Jan 2013.

Intracellular Co-delivery of native antibody and siRNA for combination therapy by using biodegradable silica nanocapsules
Biomaterials. 2022 Jan 17;281:121376. doi: 10.1016/j.biomaterials.2022.121376. Online ahead of print.ABSTRACTCombination therapy is a promising strategy for treating multidrug-resistant (MDR) cancers. Macromolecules such as antibodies and RNAs have been successfully used for targeted therapy owing to their high specificity. However, their application as therapeutics remains limited due to membrane impermeability and poor intracellular stability. Designing drug delivery systems capable of co-administering macromolecules is therefore crucial for advancing them as therapeutics for combination therapy. Herein, by using glutath...
Source: Biomaterials - January 22, 2022 Category: Materials Science Authors: Peiyan Yuan Fen Yang Si Si Liew Jiachang Yan Xiao Dong Jinfeng Wang Shubo Du Xin Mao Liqian Gao Shao Q Yao Source Type: research

Low-density lipoprotein-coupled N-succinyl chitosan nanoparticles co-delivering siRNA and doxorubicin for hepatocyte-targeted therapy.
In this study, low-density lipoprotein (LDL) was isolated from human plasma and loaded with cholesterol-conjugated siRNA to silence the multidrug resistant gene of tumors. Chol-siRNA/LDL-coupled N-succinyl chitosan nanoparticles loaded with doxorubicin (Dox-siRNA/LDL-SCS-NPs) were then prepared and characterised. The Dox-siRNA/LDL-SCS-NPs had average particle size of 206.4 ± 9.2 nm, entrapment efficiency of 71.06% ± 1.42%, and drug-loading amount of 12.35% ± 0.87%. In vitro antitumor activity revealed that cell growth was significantly inhibited. The accumulation of Dox by fluorescence microscopy and flow cytome...
Source: Biomaterials - April 24, 2014 Category: Materials Science Authors: Zhu QL, Zhou Y, Guan M, Zhou XF, Yang SD, Liu Y, Chen WL, Zhang CG, Yuan ZQ, Liu C, Zhu AJ, Zhang XN Tags: Biomaterials Source Type: research