Filtered By:
Source: Frontiers in Neurology
Nutrition: Sodium
Countries: USA Health

This page shows you your search results in order of relevance.

Order by Relevance | Date

Total 3 results found since Jan 2013.

Combining Human Umbilical Cord Blood Cells With Erythropoietin Enhances Angiogenesis/Neurogenesis and Behavioral Recovery After Stroke
In conclusion, our results suggest that hUCBC infusion in combination with EPO administration demonstrates therapeutic efficacy in the treatment of stroke-induced injury by promoting neurogenesis and angiogenesis. Further research that delineates the therapeutic mechanism of systemically administered hUCBC and EPO is required. Ethics Statement All experimental procedures involving animals were performed in accordance with the Guide for the Care and Use of Laboratory Animals as adopted and promulgated by the U. S. National Institutes of Health and were approved by CHA University Institutional Animal Care & Use Com...
Source: Frontiers in Neurology - April 9, 2019 Category: Neurology Source Type: research

Cryptotanshinone Attenuates Oxygen-Glucose Deprivation/ Recovery-Induced Injury in an in vitro Model of Neurovascular Unit
Conclusions Despite the above limitations, we indicate that the protective mechanism of CTs against OGD/R damage might exert via inhibiting neuron apoptosis and attenuating BBB disruption. Furthermore, we also clarified that CTs inhibited neuronal apoptosis possibly by blocking the activation of MAPK signaling pathways, and CTs alleviating BBB disruption may associated with the regulation of TJPs and MMP-9 in our experiment. Accordingly, CTs will represent a novel and potent candidate for the treatment of CIRI in the future. Ethics Statement This study was carried out in accordance with the recommendations of China�...
Source: Frontiers in Neurology - April 17, 2019 Category: Neurology Source Type: research

Reduction of Leukocyte Microvascular Adherence and Preservation of Blood-Brain Barrier Function by Superoxide-Lowering Therapies in a Piglet Model of Neonatal Asphyxia
Conclusion: Using three different strategies to either prevent formation or enhance elimination of O2⋅_ during the post-asphyxial period, we saw both reduced leukocyte adherence and preserved BBB function with treatment. These findings suggest that agents which lower O2⋅_ in brain may be attractive new therapeutic interventions for the protection of the neonatal brain following asphyxia. Introduction Asphyxia is a relatively common source of neonatal brain damage (1), affecting ~2 in every 1,000 births (2). The hypoxic ischemia resulting from this oxygen deprivation can produ...
Source: Frontiers in Neurology - April 30, 2019 Category: Neurology Source Type: research