A computational model of stereoscopic prey capture in praying mantises

We present a simple model which can account for the stereoscopic sensitivity of praying mantis predatory strikes. The model consists of a single “disparity sensor”: a binocular neuron sensitive to stereoscopic disparity and thus to distance from the animal. The model is based closely on the kn own behavioural and neurophysiological properties of mantis stereopsis. The monocular inputs to the neuron reflect temporal change and are insensitive to contrast sign, making the sensor insensitive to interocular correlation. The monocular receptive fields have a excitatory centre and inhibitory su rround, making them tuned to size. The disparity sensor combines inputs from the two eyes linearly, applies a threshold and then an exponent output nonlinearity. The activity of the sensor represents the model mantis’s instantaneous probability of striking. We integrate this over the stimulus dura tion to obtain the expected number of strikes in response to moving targets with different stereoscopic disparity, size and vertical disparity. We optimised the parameters of the model so as to bring its predictions into agreement with our empirical data on mean strike rate as a function of stimulus size and disparity. The model proves capable of reproducing the relatively broad tuning to size and narrow tuning to stereoscopic disparity seen in mantis striking behaviour. Although the model has only a single centre-surround receptive field in each eye, it displays qualitatively the same intera...
Source: PLoS Computational Biology - Category: Biology Authors: Source Type: research
More News: Biology | Brain | Eyes | Neurology