Sevoflurane Offers Neuroprotection in a Cerebral Ischemia/Reperfusion Injury Rat Model Through the E2F1/EZH2/TIMP2 Regulatory Axis

This study is aimed to delineate the molecular mechanistic actions by which sevoflurane protects against cerebral I/R injury. A rat model of cerebral I/R injury was established and pre-treated with sevoflurane, in which hippocampal neuron apoptosis was found to be repressed and the level of E2F transcription factor 1 (E2F1) was observed to be down-regulated. Then, the up-regulated expression of E2F1 was validated in rats with cerebral I/R injury, responsible for stimulated neuron apoptosis. Further, the binding of E2F1 to enhancer of zeste homolog 2 (EZH2) and EZH2 to tissue inhibitor of metalloproteinases-2 (TIMP2) was identified. The stimulative effect of the E2F1/EZH2/TIMP2 regulatory axis on neuron apoptosis was subsequently demonstrated through functional assays. After that, it was substantiated in vivo that sevoflurane suppressed the apoptosis of hippocampal neurons in rats with cerebral I/R injury by down-regulating E2F1 to activate the EZH2/TIMP2 axis. Taken together, our data elucidated that sevoflurane reduced neuron apoptosis through mediating the E2F1/EZH2/TIMP2 regulatory axis, thus protecting rats against cerebral I/R injury.
Source: Molecular Neurobiology - Category: Neurology Source Type: research