Automatic Detection of Small Intestinal Hookworms in Capsule Endoscopy Images Based on a Convolutional Neural Network

Gastroenterol Res Pract. 2021 Nov 24;2021:5682288. doi: 10.1155/2021/5682288. eCollection 2021.ABSTRACTAncylostomiasis is a fairly common small bowel parasite disease identified by capsule endoscopy (CE) for which a computer-aided clinical detection method has not been established. We sought to develop an artificial intelligence system with a convolutional neural network (CNN) to automatically detect hookworms in CE images. We trained a deep CNN system based on a YOLO-V4 (You Look Only Once-Version4) detector using 11236 CE images of hookworms. We assessed its performance by calculating the area under the receiver operating characteristic curve and its sensitivity, specificity, and accuracy using an independent test set of 10,529 small-bowel images including 531 images of hookworms. The trained CNN system required 403 seconds to evaluate 10,529 test images. The area under the curve for the detection of hookworms was 0.972 (95% confidence interval (CI), 0.967-0.978). The sensitivity, specificity, and accuracy of the CNN system were 92.2%, 91.1%, and 91.2%, respectively, at a probability score cut-off of 0.485. We developed and validated a CNN-based system for detecting hookworms in CE images. By combining this high-accuracy, high-speed, and oversight-preventing system with other CNN systems, we hope it will become an important supplement for detecting intestinal abnormalities in CE images. This trial is registered with ChiCTR2000034546 (a clinical research of artificial-intell...
Source: Gastroenterology Research and Practice - Category: Gastroenterology Authors: Source Type: research