Lapachol-Induced Upregulation of Sirt1/Sirt3 is linked with Improved Skin Wound Healing in Alloxan-induced Diabetic Mice

< p>Timely repair of damaged skin is very important to maintain the integrity and homeostasis of skin, but the wound healing process is compromised in diabetic patients due to several extrinsic and intrinsic factors thus lead to leg amputation and death eventually. Sirtuins, a family of seven conserved proteins are known to be associated with pathophysiological processes of the skin. The most important among them are sirt1and sirt3 involved in cell regeneration and cell survival. Naphthoquinone derivatives have a wide range of therapeutic properties, but the potential diabetic wound healing activity of lapachol has not been identified yet. The present study thus aimed to investigate the wound healing effects of lapachol in a diabetic mouse model. Diabetic wounded mice were divided into 3 groups; vehicle, lapachol 0.05%, and lapachol 0.1%. Skin samples collected from diabetic wounded mice on different time points after treatment for 10 consecutive days were subjected to downstream analysis by western blot, ELISA and histology. Lapachol treatment was found to enhance the expression of sirt1/sirt3 and other proteins involved in cell migration and blood vessel formation. The tissue development rate was increased by lapachol treatment with better collagen deposition. Interestingly, lapachol treatment also gave rise to a high concentration of growth factors resulting in speedy and timely recovery of injured skin. In summary, our findings suggest that lapachol promotes efficie...
Source: Iranian Journal of Pharmaceutical Research - Category: Drugs & Pharmacology Source Type: research