TP53 Mutation and Extraneural Metastasis of Glioblastoma: Insights From an Institutional Experience and Comprehensive Literature Review

Extraneural metastases of glioblastoma (GBM), although rare, are becoming an increasingly recognized occurrence. Currently, the biological mechanism underlying this rare occurrence is not understood. To explore the potential genomic drivers of extraneural metastasis in GBM, we present the molecular features of 4 extraneural metastatic GBMs, along with a comprehensive review and analysis of previously reported cases that had available molecular characterization. In addition to our 4 cases, 42 patients from 35 publications are reviewed. To compare the molecular profiles between GBM cases with extraneural metastasis and the general GBM population, genomic data from GBM samples in The Cancer Genome Atlas (TCGA) database were also analyzed. We found that 64.5% (20/31) of the cases with extraneural metastasis that were tested for TP53 changes had at least 1 TP53 pathogenic variant detected in either 1 or both primary and metastatic tumors. In contrast, TP53 mutation was significantly less frequent in the unselected GBM from TCGA (22.6%, 56/248) (P=0.000). In addition, O-6-methylguanine-DNA methyltransferase (MGMT) promoter methylation was more common in unselected TCGA GBM cases (48.6%, 170/350) than in cases with extraneural metastasis (31.8%, 7/22), although not statistically significant. Although isocitrate dehydrogenase (IDH) mutation is a rare occurrence in high-grade astrocytomas, IDH-mutant grade 4 astrocytomas are at least as likely to metastasize as IDH wild-type GBMs; 3 m...
Source: The American Journal of Surgical Pathology - Category: Pathology Tags: Original Articles Source Type: research