Escherichia coli infection activates the production of IFN- α and IFN-β via the JAK1/STAT1/2 signaling pathway in lung cells

Amino Acids. 2021 Sep 15:1-14. doi: 10.1007/s00726-021-03077-6. Online ahead of print.ABSTRACTEscherichia coli infections can result in lung injury, which may be closely linked to the induction of interferon secretion. The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway is one of most important pathways that regulate interferon production. Thus, the present study aimed to dissect whether E. coli infections can regulate interferon production and the underlying mechanisms. For this aim, two lung cell lines, a human bronchial epithelial cell line transformed with Ad12-SV40 2B (BEAS-2b) and a human fetal lung fibroblast (HFL1) cell line, were used. The effects of E. coli infections on interferon production were studied using qRT-PCR, Western blot, and siRNA knockdown assays. E. coli infections remarkably promoted the expression levels of IFN-α, IFN-β, and ISGs. Major components of the JAK/STAT pathway, including JAK1, STAT1, and STAT2, were demonstrated to be regulated by E. coli infections. Importantly, knockdown of JAK1, STAT1, and STAT2 abolished the induction of IFN-α, IFN-β, and ISGs by E. coli. Therefore, experiments in the present study demonstrated that E. coli infections remarkably promoted interferon production in lung cells, which was closely regulated by the JAK/STAT signaling pathway. The findings in the present study are useful for further understanding the pathogenesis of E. coli infections in the lung and finding novel therap...
Source: Amino Acids - Category: Biochemistry Authors: Source Type: research