Identification of Stabilization of Malvid Anthocyanins and Antioxidant Stress Activation via the AMPK/SIRT1 Signaling Pathway

This study aims to identify the structure of stable mallow-like anthocyanins and to determine the effect of these stable anthocyanins on human umbilical vein endothelial cells (HUVECs) with H2O2-induced oxidative damage and the signaling pathway involved. The products of malvid anthocyanins and caffeic acid bonding were identified and analyzed using ultra-high performance liquid chromatography-quadrupole-Orbitrap mass spectrometry (UPLC-Q-Orbitrap MS/MS). The bonding products were malvidin-3-O-guaiacol (Mv3C), malvidin-3-O-(6″-O-caffeoyl)-glucoside (Mv3CG), and malvidin-3-O-(6″-O-caffeoyl)-5-diglucoside (Mv3C5G). An oxidative stress injury model in HUVECs was established using H2O2 and treated with Mv, Mv3G, Mv35 G, Mv3C, Mv3CG, and Mv3C5G at different concentrations (10, 50, and 100 μmol/L). Results showed that the above compound concentrations can significantly increase cell proliferation rate and reduce intracellular reactive oxygen species at 100 μmol/L. The effects of the most active products Mv and Mv3C on the AMP-activated protein (AMPK)/silencing information regulator-1 (SIRT1) pathway were analyzed. Results showed that Mv and Mv3C significantly increased SOD activity in the cells and significantly upregulated the expression of SIRT1 mRNA, SIRT1, and p-AMPK protein. However, they did not significantly change the expression of AMPK protein. After the silent intervention of siRNA in SIRT1 gene expression, the upregulation of SIRT1 and p-AMPK protein by Mv and Mv3C...
Source: Evidence-based Complementary and Alternative Medicine - Category: Complementary Medicine Authors: Source Type: research