Fish can save energy via proprioceptive sensing

Fish have evolved diverse and robust locomotive strategies to swim efficiently in complex fluid environments. However, we know little, if anything, about how these strategies can be achieved. Although most studies suggest that fish rely on the lateral line system to sense local flow and optimise body undulation, recent work has shown that fish are still able to gain benefits from the local flow even with the lateral line impaired. In this paper, we hypothesise that fish can save energy by extracting vortices shed from their neighbours using only simple proprioceptive sensing with the caudal fin. We tested this hypothesis on both computational and robotic fish by synthesising a central pattern generator (CPG) with feedback, proprioceptive sensing, and reinforcement learning. The CPG controller adjusts the body undulation after receiving feedback from the proprioceptive sensing signal, decoded via reinforcement learning. In our study, we consider potential proprioceptive sensing i...
Source: Bioinspiration and Biomimetics - Category: Science Authors: Source Type: research