Severe contamination and time trends of legacy and novel halogenated flame retardants in multiple environmental media from Lake Shihwa, Korea: Effectiveness of regulatory action

Chemosphere. 2021 Sep;279:130620. doi: 10.1016/j.chemosphere.2021.130620. Epub 2021 Apr 22.ABSTRACTNovel halogenated flame retardants (HFRs) were introduced to industrial markets as alternatives to legacy brominated FRs (BFRs), such as polybrominated diphenyl ethers (PBDEs). In the present study, PBDEs and their brominated and chlorinated alternatives, novel BFRs (NBFRs) and dechlorane plus (DP), were measured in multiple environmental matrices in a highly industrialized lake in Korea. Legacy and novel HFRs were detected in multiple samples, indicating ubiquitous contamination. Concentrations of HFRs in water and sediment observed in creeks running through machine, textiles, and automobile industrial complexes were significantly higher than those observed in inside and outside of the lake. Higher bioaccumulation levels of HFRs were observed in inshore compared with offshore waters. Results suggest that multi-matrix distribution of legacy and novel HFRs was dependent on the geographical proximity to industrial sources. Compared with previous studies, the highest levels of PBDEs and NBFRs were recorded in water samples on a global scale, implying on-going emissions from industrial activities. Decabromodiphenyl ethane (DBDPE) was a dominant compound in water samples, whereas the concentrations of PBDEs, NBFRs, and DP in sediment were similar to each other. This suggests a shift in consumption from legacy to novel HFRs, preferentially in water environments. A significant declinin...
Source: Chemosphere - Category: Chemistry Authors: Source Type: research