The frugivorous bat Carollia perspicillata dynamically changes echolocation parameters in response to acoustic playback [RESEARCH ARTICLE]

M. Jerome Beetz, Manfred Kössl, and Julio C. Hechavarria Animals extract behaviorally relevant signals from ‘noisy’ environments. Echolocation behavior provides a rich system testbed for investigating signal extraction. When echolocating in acoustically enriched environments, bats show many adaptations that are believed to facilitate signal extraction. Most studies to date focused on describing adaptations in insectivorous bats while frugivorous bats have rarely been tested. Here, we characterize how the frugivorous bat Carollia perspicillata adapts its echolocation behavior in response to acoustic playback. Since bats not only adapt their echolocation calls in response to acoustic interference but also with respect to target distances, we swung bats on a pendulum to control for distance-dependent call changes. Forward swings evoked consistent echolocation behavior similar to approach flights. By comparing the echolocation behavior recorded in the presence and absence of acoustic playback, we could precisely define the influence of the acoustic context on the bats' vocal behavior. Our results show that C. perspicillata decrease the terminal peak frequencies of their calls when echolocating in the presence of acoustic playback. When considering the results at an individual level, it became clear that each bat dynamically adjusts different echolocation parameters across and even within experimental days. Utilizing such dynamics, bats create unique echolocat...
Source: Journal of Experimental Biology - Category: Biology Authors: Tags: RESEARCH ARTICLE Source Type: research