Photo-catalytic degradation of bisphenol-a from aqueous solutions using GF/Fe-TiO 2 -CQD hybrid composite

In this study, different ratios of CQD in the composite (1.5, 4.5 and 7.5  wt%), pH, and bisphenol-A concentration as variable parameters were investigated. All analyzes, EF-SEM, EDX, BET, XRD, FTIR, show that the GF/Fe-TiO2-CQD composite is well coated on glass fibers (GF) and all the elements in the catalyst are present. On the other hand, DRS analysis showed that CQD reduces the band gap of Fe-TiO2 from 2.96  eV to 2.91 eV, it was 3.10 eV for TiO2. Among different catalysts, GF/Fe-TiO2-CQD4.5wt% has the best performance. The results showed that for GF/Fe-TiO2-CQD4.5wt%, optimum for the process was at pH  = 6 in low concentration of bisphenol-A. The first order model for the photocatalytic degradation process were well studied. In addition, GF/Fe-TiO2-CQD4.5wt% showed that it can be used many times with a minimal reduction in performance. As a result, the GF/Fe-TiO2-CQD4.5wt% composite can successfully remove bisphenol-A form in synthetic aqueous solution. However, it is necessary to further studies to applied that for real water source in water and wastewater treatment plants.
Source: Journal of Environmental Health Science and Engineering - Category: Environmental Health Source Type: research