Genes, Vol. 12, Pages 312: Quantitative Approach to Fish Cytogenetics in the Context of Vertebrate Genome Evolution

Genes, Vol. 12, Pages 312: Quantitative Approach to Fish Cytogenetics in the Context of Vertebrate Genome Evolution Genes doi: 10.3390/genes12020312 Authors: Veronika Borůvková W. Mike Howell Dominik Matoulek Radka Symonová Our novel Python-based tool EVANGELIST allows the visualization of GC and repeats percentages along chromosomes in sequenced genomes and has enabled us to perform quantitative large-scale analyses on the chromosome level in fish and other vertebrates. This is a different approach from the prevailing analyses, i.e., analyses of GC% in the coding sequences that make up not more than 2% in human. We identified GC content (GC%) elevations in microchromosomes in ancient fish lineages similar to avian microchromosomes and a large variability in the relationship between the chromosome size and their GC% across fish lineages. This raises the question as to what extent does the chromosome size drive GC% as posited by the currently accepted explanation based on the recombination rate. We ascribe the differences found across fishes to varying GC% of repetitive sequences. Generally, our results suggest that the GC% of repeats and proportion of repeats are independent of the chromosome size. This leaves an open space for another mechanism driving the GC evolution in vertebrates.
Source: Genes - Category: Genetics & Stem Cells Authors: Tags: Article Source Type: research
More News: Bird Flu | Fish | Genetics