Schizandrin B attenuates hypoxia/reoxygenation injury in H9c2 cells by activating the AMPK/Nrf2 signaling pathway.

Schizandrin B attenuates hypoxia/reoxygenation injury in H9c2 cells by activating the AMPK/Nrf2 signaling pathway. Exp Ther Med. 2021 Mar;21(3):220 Authors: Zhao B, Li GP, Peng JJ, Ren LH, Lei LC, Ye HM, Wang ZY, Zhao S Abstract Schizandrin B exhibits prominent antioxidant and anti-inflammatory effects, and plays an important role in ameliorating myocardial ischemia/reperfusion injury. However, the underlying protective mechanisms remain to be elucidated. The aim of the present study was to explore the cardioprotective effects of schizandrin B against hypoxia/reoxygenation (H/R)-induced H9c2 cell injury, focusing on the role of the adenosine monophosphate-activated protein kinase (AMPK)/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway in this process. The results showed that schizandrin B attenuated the H/R-induced decrease in cell viability and the increase in lactate dehydrogenase release, as well as the apoptosis rate in H9c2 cells. Schizandrin B also mitigated H/R-induced oxidative stress, as illustrated by the decrease in intracellular reactive oxygen species generation, malondialdehyde content and NADPH oxidase 2 expression, and the increase in antioxidant enzyme superoxide dismutase and glutathione peroxidase activities. In addition, schizandrin B reversed the H/R-induced upregulation of pro-inflammatory cytokines [interleukin (IL)-1β (IL-1β) tumor necrosis factor-α, IL-6 and IL-8] and the downregulation of anti-i...
Source: Experimental and Therapeutic Medicine - Category: General Medicine Tags: Exp Ther Med Source Type: research