miR-520d suppresses rapid pacing-induced apoptosis of atrial myocytes through mediation of ADAM10

In this study, the atrial myocytes grew adherently with irregular morphology. Immunofluorescence showed that more than 90% of atrial myocytes were α-sarcomeric actin (α-SCA) positive, indicating that the primary cells were positive for α-SCA staining and atrial myocytes were successfully isolated. The pacing atrial myocyte model was established after rapid pacing stimulation and we found the rapid pacing stimulation caused elevated ADAM10 a nd suppressed miR-520d. CCK-8 assay was applied for evaluation of cell viability, TUNEL staining for assessment of cell apoptosis and dual-luciferase reporter gene assay for verification of the targeting relationship between miR-520d and ADAM10. Overexpression of miR-520d or silencing of ADAM10 coul d enhance cell viability and reduce cell apoptosis in the rapid pacing-induced atrial myocytes. ADAM10 was a target gene of miR-520d. MiR-520d negatively targeted ADAM10, thereby promoting cell viability and inhibiting apoptosis in rapid pacing atrial myocyte model. In summary, miR-520d enhances atr ial myocyte viability and inhibits cell apoptosis in rapid pacing-induced AF mouse model through negative mediation of ADAM10.
Source: Journal of Molecular Histology - Category: Laboratory Medicine Source Type: research