The exosome-like vesicles derived from androgen exposed-prostate stromal cells promote epithelial cells proliferation and epithelial-mesenchymal transition.

In this study, human nonmalignant prostate epithelial RWPE-1 cells were cocultured with testosterone (TE) -exposed prostate stromal fibroblasts WPMY-1 cells (TE-WPMY-1). The survival rate, epithelial-mesenchymal transition (EMT) and collagen deposition of RWPE-1 were observed. The expression profiles of circRNAs, lncRNAs and mRNAs in WPMY-1-derived exosome-like vesicles (WPMY-1-exo) were explored by high-throughput RNA sequencing. Firstly, both TE-WPMY-1 and TE-WPMY-1-exo significantly promoted RWPE-1 cells proliferation. Secondly, 41 circRNAs, 132 lncRNAs and 1057 mRNAs were differentially expressed (DE) between TE-WPMY-1-exo and the control. Functional enrichment analyses, co-expression analyses and quantitative real-time PCR verification showed that the DE RNAs played important roles in cell proliferation, structure, phenotype and fibrosis. Lastly, blocking WPMY-1-exo biogenesis/release by GW4869 can attenuate TE-WPMY-1-stimulated RWPE-1 cells EMT and collagen deposition. Taken together, our results indicated that WPMY-1-exo modulated the phenotypes changes and collagen deposition of prostate epithelial cells. It provided a novel basis for understanding the underlying mechanisms of RWPE-1 cells EMT and fibrosis induced by WPMY-1 in BPH. PMID: 33359661 [PubMed - as supplied by publisher]
Source: Toxicology and Applied Pharmacology - Category: Toxicology Authors: Tags: Toxicol Appl Pharmacol Source Type: research