Biomass allocation strategies and Pb-enrichment characteristics of six dwarf bamboos under soil Pb stress.

This study examined the biomass allocation strategies and lead (Pb) enrichment characteristics of various dwarf bamboo tissues by the end of the growing season and explored their potential for phytoremediation of Pb stress in the soils. Six dwarf bamboo genotypes were treated with three levels (0, 300, and 1500 mg kg-1) of soil Pb stress. The majority of the bamboos adopted two biomass allocation strategies to adapt to Pb stress, namely, "reducing biomass allocation into new bamboo growth" and "increasing/stabilizing biomass allocation into rhizomes". Pb accumulation was highest in the roots, rhizomes, and old stems and showed the following trend: rhizomes/old stems> new roots/old roots> old leaves> new leaves> new stems among various tissues. Moreover, the six bamboos used three different Pb-enrichment strategies, as follows: (i) "rhizome domination and old stem synergy" (Sasaella glabra (Nakai) f. albo-striata Muroi, Sasa auricoma (Mitford) E.G. Camus, Sasa fortunei (Van Houtte) Fiori, and Shibataea lanceifolia C.H. Hu); (ii) "old stem domination and rhizome synergy" (Indocalamus decorus Q.H. Dai); and (iii) "old stem domination and new root synergy" (Sasa argenteostriata (Regel) E.G. Camus). In Pb-contaminated soils, genotypes with TFs greater than 1 were Sasa fortunei (Van Houtte) Fiori, Sasa argenteostriata (Regel) E.G. Camus, and Indocalamus decorus Q.H. Dai; in addition, only S. argenteostriata had BCF values greater than 1. Furthermore, this study pr...
Source: Ecotoxicology and Environmental Safety - Category: Environmental Health Authors: Tags: Ecotoxicol Environ Saf Source Type: research