Response of periphytic biofilm in water to estrone exposure: Phenomenon and mechanism.

In this study, the changes in physiological activity and community composition of periphytic biofilms before and after E1 exposure were investigated. The results showed that periphytic biofilms exhibited high adaptability to E1 exposure at a concentration of 0.5 mg L-1 based on physiological results. The increase in productivity of extracellular polymeric substances (EPS) after exposure to E1 was the main factor preventing association between E1 and microbial cells. The increase in the activity of superoxide dismutase (SOD) and ATP enzyme activity and the change in the co-occurrence pattern of microbial communities (increasing the relative abundance of Xanthomonadaceae and Cryomorphacea) also protected biofilms from E1 exposure. However, exposure to a high concentration of E1 (>10 mg L-1) significantly decreased EPS productivity and metabolic activity due to the excessive accumulation of reactive oxygen species. In addition, the abundance of some sensitive species, such as Pseudanabaenaceae, decreased sharply at this concentration. Overall, this study highlighted the feasibility of periphytic biofilms to adapt to E1 exposure at low concentrations in aquatic environments. PMID: 33254393 [PubMed - in process]
Source: Ecotoxicology and Environmental Safety - Category: Environmental Health Authors: Tags: Ecotoxicol Environ Saf Source Type: research