Factors affecting in situ analysis of total petroleum hydrocarbons in contaminated soils by using a mid-infrared diffuse reflectance spectroscopy.

Factors affecting in situ analysis of total petroleum hydrocarbons in contaminated soils by using a mid-infrared diffuse reflectance spectroscopy. Chemosphere. 2020 Dec;261:127751 Authors: Chen CS, Tien CJ Abstract The hand-held mid-infrared diffuse reflectance infrared Fourier transform (MIR-DRIFT) spectrometer was used to assess the applicability of on-site and real time monitoring of total petroleum hydrocarbons (TPH) in contaminated soils during site characterization and remediation. Field measurement devices (MIR-DRIFT and turbidimetric screening test kits) were used to analyze reference soils with concentration ranging from 713 to 54790 mg/kg and compared with the results by a gas chromatography/mass spectrometry method (GC/MS). In situ field measurement of 147 petroleum-contaminated soil samples from 11 contaminated sites was correlated with laboratory-determined soil TPH levels by GC/MS. The concentrations of TPH by MIR-DRIFT were significantly correlated to the concentrations of TPH by GC/MS. Detection of TPH by the MIR spectrometer was not affected by the weathering effects of diesel-contaminated soils. Soils contaminated by mixed fuels with high content of gasoline constituents may cause the potential interference in MIR measurement. In field practice, interference may be attributed to soil moisture, soil organic matter, and soil texture. Soil moisture below 5% is required to reduce variation of infrared beam reflected fr...
Source: Chemosphere - Category: Chemistry Authors: Tags: Chemosphere Source Type: research