Exosomes from adipose-derived stem cells attenuate UVB-induced apoptosis, ROS, and the Ca2+ level in HLEC cells.

Exosomes from adipose-derived stem cells attenuate UVB-induced apoptosis, ROS, and the Ca2+ level in HLEC cells. Exp Cell Res. 2020 Oct 09;:112321 Authors: Hong Y, Sun Y, Rong X, Li D, Lu Y, Ji Y Abstract Cartilage acid protein 1 (CRTAC1) encodes a protein containing the Ca2+binding domain, which can promote apoptosis of human lens epithelial cells (HLECs) induced by ultraviolet B radiation. Exosomes secreted from adipose-derived stem cells (ASC-exo) have been used to treat many diseases, but the effect of ASC-exo on cataracts has not been established. We hypothesized that ASC-exo has a therapeutic effect on cataracts by regulating CRTAC1. We established the UVB-induced injured HLECs model to test the interactions between CRTAC1 and miR-10a-5p, and the effect on the Ca2+ level and reactive oxygen species (ROS) generation in apoptotic HLECs. We found that UVB significantly increased the level of CRTAC1 expression and induced HLEC apoptosis, while ASC-exo inhibited the induction of UVB and exosome inhibitor reduced the inhibition of ASC-exo. The qRT-PCR results showed that miR-10a-5p had a low level of expression in cataract lesions, whereas CRTAC1 was highly expressed. There was a negative correlation between the expression of CRTAC1 and miR-10a-5p. ASC-exo reversed UVB-inhibited miR-10a-5p expression and miR-10a-5p negatively regulated CRTAC1. In vitro data showed that miR-10a-5p reversed UVB-induced ROS, apoptosis, and the Ca2+ leve...
Source: Experimental Cell Research - Category: Cytology Authors: Tags: Exp Cell Res Source Type: research