Antiproliferative abietane quinone diterpenoids from the roots of Salvia deserta.

Antiproliferative abietane quinone diterpenoids from the roots of Salvia deserta. Bioorg Chem. 2020 Sep 03;104:104261 Authors: Zheng X, Kadir A, Zheng G, Jin P, Qin D, Maiwulanjiang M, Aisa HA, Yao G Abstract A total of twenty abietane quinone diterpenoids including ten new ones (1-10) were isolated from the roots extract of Salvia deserta. Their chemical structures were delineated by extensive spectrometric and spectroscopic techniques including HRESIMS, NMR, UV, IR, and single-crystal X-ray diffraction analysis, calculated 13C NMR-DP4+ analysis, calculated ECD, and Mo2(OAc)4-induced ECD. The absolute configurations of salvidesertone A (1), 8α,9α-epoxy-6-deoxycoleon U (18), and 7,20-epoxyroyleanone (19) were determined by single-crystal X-ray diffraction analysis. Salvidesertone A (1) represents the first example of a 9-hydroxyabieta-7(8)-ene quinone diterpenoid. This is the first report of the crystal structures of 8α,9α-epoxy-6-deoxycoleon U (18) and 7,20-epoxyroyleanone (19). Abietane quinone diterpenoids 1, 2, and 4-20 were evaluated for their antiproliferative activities against five cancer cell lines A-549, SMMC-7721, SW480, MCF-7, and HL-60 and a normal epithelial cell line BEAS-2B in vitro. Salvidesertones E (8) and F (9) selectively inhibited the proliferation of A-549, SMMC-7721, and SW480 cancer cell lines. Importantly, salvidesertones E (8) and F (9), horminone (13), taxoquinone (14), 7α-O-methylhorminone (15), and ...
Source: Bioorganic Chemistry - Category: Chemistry Authors: Tags: Bioorg Chem Source Type: research