Social interactions drive efficient foraging and income equality in groups of fish

The social interactions underlying group foraging and their benefits have been mostly studied using mechanistic models replicating qualitative features of group behavior, and focused on a single resource or a few clustered ones. Here, we tracked groups of freely foraging adult zebrafish with spatially dispersed food items and found that fish perform stereotypical maneuvers when consuming food, which attract neighboring fish. We then present a mathematical model, based oninferred functional interactions between fish, which accurately describes individual and group foraging of real fish. We show that these interactions allow fish to combine individual and social information to achieve near-optimal foraging efficiency and promote income equality within groups. We further show that the interactions that would maximize efficiency in these social foraging models depend on group size, but not on food distribution - suggesting that fish may adaptively pick the subgroup of neighbors they 'listen to' to determine their own behavior.
Source: eLife - Category: Biomedical Science Tags: Computational and Systems Biology Physics of Living Systems Source Type: research