Supramolecular biocomposite hydrogels formed by cellulose and host-guest polymers assisted by calcium ion complexes.

Supramolecular biocomposite hydrogels formed by cellulose and host-guest polymers assisted by calcium ion complexes. Biomacromolecules. 2020 Aug 18;: Authors: Tsuchiya H, Sinawang G, Asoh TA, Osaki M, Ikemoto Y, Higuchi Y, Yamaguchi H, Harada A, Uyama H, Takashima Y Abstract Hydrogels are biocompatible polymer networks; however, they have the disadvantage for having poor mechanical properties. Herein, the mechanical properties of host-guest hydrogels were increased by adding a filler and incorporating other noncovalent interactions. Cellulose was added as a filler to the hydrogels to afford a composite. Citric acid-modified cellulose (CAC) with many carboxyl groups was used instead of conventional cellulose. The preparation was began with mixing an acrylamide-based αCD host polymer (p-αCD) and a dodecanoic acid guest polymer (p-AADA) to form supramolecular hydrogels (p-αCD/p-AAD). However, when CAC was directly added to p-αCD/p-AADA to form biocomposite hydrogels (p-αCD/p-AADA/CAC), it showed weaker mechanical properties than p-αCD/p-AADA itself. This was caused by the strong intramolecular hydrogen bonding (H-bonding) within the CAC, which prevented the CAC reinforcing the p-αCD/p-AADA in the p-αCD/p-AADA/CAC. Then, calcium chloride solution (CaCl2) was used to form calcium ion (Ca2+) complexes between the CAC and p-αCD/p-AADA. This approach successfully created supramolecular biocomposite hydrogels assisted by Ca2+ complex...
Source: Biomacromolecules - Category: Biochemistry Authors: Tags: Biomacromolecules Source Type: research