Sensors, Vol. 20, Pages 3825: A Wearable Device Based on a Fiber Bragg Grating Sensor for Low Back Movements Monitoring

In this study, a novel wearable device embedding a Fiber Bragg Grating sensor for the detection of lumbar flexion-extensions (F/E) in seated subjects is proposed. At first, the manufacturing process of the sensing element was shown together with its mechanical characterization, that shows linear response to strain with a high correlation coefficient (R2 > 0.99) and a sensitivity value (Sε) of 0.20 nm∙mε−1. Then, the capability of the wearable device in measuring F/E in the sagittal body plane was experimentally assessed on a small population of volunteers, using a Motion Capture system (MoCap) as gold standard showing good ability of the system to match the lumbar F/E trend in time. Additionally, the lumbar ROMs were evaluated in terms of intervertebral lumbar distances (Δ d L 3 − L 1 ) and angles, exhibiting moderate to good agreement with the MoCap outputs (the maximum Mean Absolute Error obtained is ~16% in detecting Δ d L 3 − L 1 ). The proposed wearable device is the first attempt for the development of FBG-based wearable systems for workers’ safety monitoring.
Source: Sensors - Category: Biotechnology Authors: Tags: Article Source Type: research