Removal of dyes by immobilization of Trametes versicolor in a solid-state micro-fermentation system.

Removal of dyes by immobilization of Trametes versicolor in a solid-state micro-fermentation system. Rev Argent Microbiol. 2020 Jun 30;: Authors: Diorio LA, Fréchou DMS, Levin LN Abstract A novel bioreactor system (low cost and easily scaled-up) is presented for dye decolorization applying filamentous fungi. In this two-phase bioreactor, dyes were decolorized at 28°C in a first phase by immobilized fungi in spherical cartridges prepared with a high-density plastic polyethylene mesh and filled with wheat bran as substrate for growth. In a second phase the capacity of the ligninolytic enzymes (laccase and Mn-peroxidase) present in the extracellular extracts from the solid residues was exploited for decolorization at 50°C. Each sphere behaved as a small-scale bioreactor for cell-culture. This system allowed the decoupling of growth (sterile condition) and decolorization (non-sterile condition) stages. The ability to decolorize the azo dye xylidine and the triphenylmethane Malachite Green by two Argentinean strains of Trametes versicolor was evaluated. The highest decolorization rates were displayed by T. versicolor BAFC 2234. When both dyes were applied together in the bioreactor, after a first phase (100min) 73.5% of Malachite Green and 40% of xylidine decolorization was attained, while at the end of the second phase (240min) a 97% and 52% decolorization was observed. Laccase activity was detected in the decolorized solution, but no...
Source: Revista Argentina de Microbiologia - Category: Microbiology Tags: Rev Argent Microbiol Source Type: research