USP9X prevents AGEs-induced upregulation of FN and TGF- β1 through activating Nrf2-ARE pathway in rat glomerular mesangial cells.

USP9X prevents AGEs-induced upregulation of FN and TGF-β1 through activating Nrf2-ARE pathway in rat glomerular mesangial cells. Exp Cell Res. 2020 May 19;:112100 Authors: Huang K, Zhao X Abstract Oxidative stress is a key pathological factor for diabetic renal fibrosis by activating TGF-β/Smad pathway in glomerular mesangial cells (GMCs) to promote the synthesis of extracellular matrix such as fibronectin (FN). Nuclear factor-E2-related factor (Nrf2)- anti-oxidant response element (ARE) anti-oxidative pathway has crucial renoprotective effects, and inhibiting ubiquitin-mediated degradation of Nrf2 delays diabetic renal fibrosis development. Ubiquitin-specific protease 9X (USP9X) has close relationship with oxidative stress and TGF-β/Smad pathway, but whether it regulate diabetic renal fibrosis remains unclarified. Here, we found that advanced glycation-end products (AGEs) dose- and time-dependently reduced the protein expression and deubiquitinase activity of USP9X in GMCs. USP9X overexpression attenuated AGEs-induced upregulation of FN, TGF-β1, and Collagen Ⅳ, three fibrosis-related marker proteins, in a deubiquitinase activity-dependent manner. While USP9X depletion with siRNAs further promoted the expressions of those proteins in AGEs-treated GMCs. Under AGEs treatment conditions, USP9X overexpression markedly increased the total and nuclear levels, ARE-binding ability, and transcriptional activity of Nrf2, upregulated the ...
Source: Experimental Cell Research - Category: Cytology Authors: Tags: Exp Cell Res Source Type: research