Performance evaluation of a biotrickling filter for the removal of gas-phase 1,2-dichlorobenzene: Influence of rhamnolipid and ferric ions.

Performance evaluation of a biotrickling filter for the removal of gas-phase 1,2-dichlorobenzene: Influence of rhamnolipid and ferric ions. Chemosphere. 2020 Jul;250:126261 Authors: Li K, Yang B, Wang L Abstract The aim of this study was to evaluate the influence of rhamnolipid (RL) and ferric ions on the performance of a biotrickling filter (BTF) for the removal of gas-phase 1,2-dichlorobenzene (o-DCB). A comprehensive investigation of microbial growth, pollutant solubility, extracellular polymeric substances (EPS) and enzymatic activity in o-DCB degradation by an isolated strain Bacillus cereus DL-1 with/without RL and Fe3+ were carried out using batch microcosm experiments. In addition, o-DCB removal performance, biofilm morphology, and microbial community structures in two identical lab-scale biotrickling filters (named BTF1 and BTF2) inoculated with strain DL-1 were studied. The batch microcosm experiments demonstrated that 120 mg L-1 RL and 4 mg L-1 Fe3+ could enhance the biodegradation of o-DCB, which may be due to promotion on bacterial growth, o-DCB solubilization, C12O enzyme activity, and polysaccharide (PS) and protein (PN) in EPS. Fourier transform infrared (FTIR) spectra indicated that the addition of RL with Fe3+ had notable effects on the functional groups of PS and PN in EPS. The experimental results in BTFs indicate that the removal efficiency of o-DCB decreased from 100% to 56.4% for BTF1, which was not fed wit...
Source: Chemosphere - Category: Chemistry Authors: Tags: Chemosphere Source Type: research