Corn microbial diversity and its relationship to yield

This study aimed to identify possible relationships between corn (Zea mays L.) productivity and its endosphere microbial community. Any insights would be used to develop testable hypotheses at the farm level. Sap was collected from 14 fields in 2014 and 10 fields in 2017, with a yield range of 10.1 to 21.7 tonnes per hectare (t/ha). The microbial sap communities were analyzed using terminal restriction fragment length polymorphism (TRFLP) and identified using an internal pure culture reference database and BLAST. This technique is rapid and inexpensive and is suitable for use at the grower level. Diversity, richness, and normalized abundances of each bacterial population in corn sap samples were evaluated to link the microbiome of a specific field to its yield. A negative trend was observed (r = –0.60), with higher-yielding fields having lower terminal restriction fragment (TRF) richness. A partial least square regression analysis of TRF intensity and binary data from 2014 identified 10 TRFs (bacterial genera) that positively, or negatively, correlated with corn yields, when either absent or present at certain levels or ratios. Using these observations, a model was developed that accommodated criteria for each of the 10 microbes and assigned a score for each field out of 10. Data collected in 2014 showed that sites with higher model scores were highly correlated with larger yields ( r = 0.83). This correlation was also seen when the 2017 data set was used (r = 0.87). We wer...
Source: Canadian Journal of Microbiology - Category: Microbiology Authors: Source Type: research