GSE143911 Meis2 ChIP-seq in palate

In this study, we found widespread Meis2 expression in the developing palate in mice. Meis2 inactivation by Wnt1Cre in cranial neural crest cells led to the cleft of the secondary palate. Importantly, about half of Wnt1Cre;Meis2f/f mice exhibited submucous cleft, providing an excellent model for studying palatal bone formation and patterning. Consistent with a complete absence of the palatal bones, integrative analyses of Meis2 ChIP-seq, RNA-seq, and ATAC-seq results identified key osteogenic genes that are regulated directly by Meis2, indicating the fundamental role of Meis2 in palatal osteogenesis. De novo motif analysis discovered that the Meis2-bound regions possess highly enriched binding motifs of several key osteogenic transcription factors particularly Shox2. Comparison of Meis2 and Shox2 ChIP-seq analyses further revealed a genome-wide co-occupancy, in addition to their co-localization in the developing palate and physical interaction, suggesting that Shox2 and Meis2 act as partners. However, while Shox2 is required for proper palatal bone formation and is a direct downstream target of Meis2, Shox2 overexpression failed to rescue the palatal bone defects in Meis2 mutant background. These results, together with the facts that Meis2 expression is associated with high osteogenic potential and is required for the chromatin accessibility of osteogenic genes, support a vital function of Meis2 in setting up the ground state for palatal osteogenesis.
Source: GEO: Gene Expression Omnibus - Category: Genetics & Stem Cells Tags: Genome binding/occupancy profiling by high throughput sequencing Mus musculus Source Type: research
More News: Cleft Palate | Genetics | Study