Allosteric modulation of the GTPase activity of a bacterial LRRK2 homologue by conformation-specific Nanobodies.

Allosteric modulation of the GTPase activity of a bacterial LRRK2 homologue by conformation-specific Nanobodies. Biochem J. 2020 Mar 13;: Authors: Leemans M, Galicia C, Deyaert E, Daems E, Krause L, Paesmans J, Pardon E, Steyaert J, Kortholt A, Sobott F, Klostermeier D, Versées W Abstract Mutations in the Parkinson's disease (PD)-associated protein leucine-rich repeat kinase 2 (LRRK2) commonly lead to a reduction of GTPase activity and increase in kinase activity. Therefore, strategies for drug development have mainly been focusing on the design of LRRK2 kinase inhibitors. We recently showed that the central RocCOR domains (Roc: Ras of complex proteins; COR: C-terminal of Roc) of a bacterial LRRK2 homologue cycle between a dimeric and monomeric form concomitant with GTP binding and hydrolysis. PD-associated mutations can slow down GTP hydrolysis by stabilizing the protein in its dimeric form. Here, we report the identification of two Nanobodies (NbRoco1 and NbRoco2) that bind the bacterial Roco protein (CtRoco) in a conformation-specific way, with a preference for the GTP-bound state. NbRoco1 considerably increases the GTPase turnover of CtRoco and reverts the decrease in GTPase activity caused by a PD-analogous mutation. We show that NbRoco1 exerts its effect by allosterically interfering with the CtRoco dimer-monomer cycle through destabilization of the dimeric form. Hence, we provide the first proof of principle that allosteric m...
Source: The Biochemical Journal - Category: Biochemistry Authors: Tags: Biochem J Source Type: research