Advances in finite element modelling of graphene and associated nanostructures

Publication date: April 2020Source: Materials Science and Engineering: R: Reports, Volume 140Author(s): Y. Chandra, S. Adhikari, E.I. Saavedra Flores, Ł. FigielAbstractGraphene and its associated nanostructures (GANS) have been widely investigated by means of experimental and numerical approaches over the last decade. GANS and GANS reinforced composite materials show exceptional promise towards superior mechanical and thermal properties along with limitless opportunity to tailor, control, design, modify and manipulate such properties. These attributes make graphene and its associated nanostructures as one of the most important future material technologies in aerospace, automotive, medical, civil and military sectors of the 21st century. Among the various numerical methods used to analyse GANS and GANS reinforced composite materials, the finite element method (FEM) plays a prominent role. The FEM has been the standard analysis and simulation method for conventional structural and mechanical problems over the past half a century. However, its growing role and impact in atomistic-scale numerical simulation in general, and GANS, in particular, is not well known within the wider scientific and engineering modelling and simulation research community. There is a compelling need to document the expansive use of the finite element method, its advantages, shortcomings, relevance and purpose in a way which is pertinent to both material science and numerical simulation researchers. This...
Source: Materials Science and Engineering: R: Reports - Category: Materials Science Source Type: research