Adenomyosis-derived extracellular vesicles endow endometrial epithelial cells with an invasive phenotype through epithelial-mesenchymal transition

In this study, AMEVs were isolated from patients with adenomyosis and characterized by transmission electron microscopy, Western blot, and nanoparticle tracking. Primary endometrial epithelial cells (EECs) were derived from normal endometrium tissues from patients with leiomyoma and co-cultured with AMEVs in vitro. AMEV uptake was examined by fluorescence confocal microscopy. The invasion of EECs was confirmed by Transwell assay. Immunohistochemistry, Western blot, and qRT-PCR were performed on EECs to illustrate the expression levels of cytokeratin 19, E-cadherin, vimentin, and zinc finger E-box-binding homeobox 1 (ZEB1). The results indicated that the cellular fluorescence intensity gradually increased after 48 hours of co-culture, but decreased after 72 hours. After co-culturing with AMEVs for 72 hours, EECs expressed significantly lower levels of cytokeratin 19 and E-cadherin, and significantly higher levels of vimentin and ZEB1. Together these results demonstrated that AMEVs induce an EMT process and enhance the invasion of EECs. These changes may contribute to the pathogenesis and progression of adenomyosis.
Source: Genes and Diseases - Category: Genetics & Stem Cells Source Type: research