Recent progress of all-polymer solar cells – From chemical structure and device physics to photovoltaic performance

Publication date: April 2020Source: Materials Science and Engineering: R: Reports, Volume 140Author(s): Hang Yin, Cenqi Yan, Hanlin Hu, Johnny Ka Wai Ho, Xiaowei Zhan, Gang Li, Shu Kong SoAbstractSingle junction organic solar cells (OSCs) have now achieved power conversion efficiencies (PCEs) exceeding 17 %. Most of these high performance OSCs contain fullerene acceptors (FAs) and non-fullerene small-molecule acceptors (NFSMAs). In contrast, there are very limited usages of polymer acceptors. Recently, there are escalating recognition among perylene-diimide/naphthalene-diimide (PDI/NDI) and B⟵N-unit n-type polymers as electron acceptors in the all-polymer solar cells. FAs like PC71BM suffer from multiple limitations. They include restricted energy level tuning, weak absorptions in visible region, narrow spectral breadth, and morphological instability. In contrast to FAs, NFSMAs offer numerous advantages. They include strong and broad absorption in the visible and even the NIR region, tunable energy levels, and simple synthesis and purification procedures. Despite these advantages, the long-term device stability and large-area roll-to-roll (R2R) fabrication remain the major issues for the commercialization for NFSMA-based OSCs. All-polymer solar cells, on the other hand, largely address the problems of device stability and large-area film processing. Many all-polymer solar cells have been demonstrated to possess long-term thermal, photo and mechanical stability. Meanwhile, t...
Source: Materials Science and Engineering: R: Reports - Category: Materials Science Source Type: research