CRISPR/Cas9 genome-wide screening identifies KEAP1 as a sorafenib, lenvatinib, and regorafenib sensitivity gene in hepatocellular carcinoma.

CRISPR/Cas9 genome-wide screening identifies KEAP1 as a sorafenib, lenvatinib, and regorafenib sensitivity gene in hepatocellular carcinoma. Oncotarget. 2019 Dec 17;10(66):7058-7070 Authors: Zheng A, Chevalier N, Calderoni M, Dubuis G, Dormond O, Ziros PG, Sykiotis GP, Widmann C Abstract Sorafenib is the first-line drug used for patients with advanced hepatocellular carcinoma (HCC). However, acquired sorafenib resistance in cancer patients limits its efficacy. Here, we performed the first genome-wide CRISPR/Cas9-based screening on sorafenib-treated HCC cells to identify essential genes for non-mutational mechanisms related to acquired sorafenib resistance and/or sensitivity in HCC cells. KEAP1 was identified as the top candidate gene by Model-based Analysis of Genome-wide CRISPR/Cas9 Knockout (MAGeCK). KEAP1 disrupted HCC cells were less sensitive than wild-type cells in short- and long-term sorafenib treatments. Compared to wild-type cells, KEAP1-disrupted cells showed lower basal and sorafenib-induced reactive oxygen species (ROS) levels and were more resistant to oxidative stress-induced cell death. The absence of KEAP1 led to increased activity of Nrf2, a key transcription factor controlling antioxidant responses, as further evidenced by increased expression of Nrf2-controlled genes including NQO1, GPX2 and TXNRD1, which were positively associated with chemoresistance. In addition, KEAP1 disruption counteracted the reduction of c...
Source: Oncotarget - Category: Cancer & Oncology Tags: Oncotarget Source Type: research