Oriented attachment induces fivefold twins by forming and decomposing high-energy grain boundaries

Natural and synthetic nanoparticles composed of fivefold twinned crystal domains have distinct properties. The formation mechanism of these fivefold twinned nanoparticles is poorly understood. We used in situ high-resolution transmission electron microscopy combined with molecular dynamics simulations to demonstrate that fivefold twinning occurs through repeated oriented attachment of ~3-nanometer gold, platinum, and palladium nanoparticles. We discovered two different mechanisms for forming fivefold twinned nanoparticles that are driven by the accumulation and elimination of strain. This was accompanied by decomposition of grain boundaries and the formation of a special class of twins with a net strain of zero. These observations allowed us to develop a quantitative picture of the twinning process. The mechanisms provide guidance for controlling twin structures and morphologies across a wide range of materials.
Source: ScienceNOW - Category: Science Authors: Tags: Materials Science r-articles Source Type: news