Targeting immunotherapy for bladder cancer by using anti-CD3 × CD155 bispecific antibody

To investigate whether CD155 is an attractive target for T cell-mediated immunotherapy against human bladder cancer, we examined the novel bispecific antibody anti-CD3 x anti-CD155 (CD155Bi-Ab) for its ability to redirect activated T cells (ATCs) to target bladder cancer cells was examined. Expression of CD155 was detected by flow cytometry on the surface of bladder cancer cells, including T24 and Pumc-91 cells, and their chemotherapeutic drug-resistant counterparts. ATCs generated from healthy donors were stimulated with anti-CD3 monoclonal antibody, anti-CD28 monoclonal antibody and interleukin-2 (IL-2) for 14 days. The cytotoxic activity of ATCs armed with CD155Bi-Ab against bladder cancer cells was detected by LDH and luciferase quantitative assay. Furthermore, ATCs generated from bladder cancer patients were also armed with CD155Bi-Ab to verity the cell killing by the same methods. In contrast to unarmed ATCs, CD155Bi-armed ATCs against bladder cancer cells were increased cytotoxic activity at effector/target (E/T) ratios of 5:1, 10:1, and 20:1, with more IFN-γ, TNF-α secreting. It is worth noting that in spite of the presence of immunosuppression in bladder cancer patients and the drug resistance in chemotherapeutic drug-resistant cancer cell lines, not only the anti-tumor effect of CD155Bi-armed ATCs generated from bladder cancer patients still showed significantly but only higher level of activation marker CD69 was expressed. Taken together, our results su...
Source: Journal of Cancer - Category: Cancer & Oncology Authors: Tags: Research Paper Source Type: research

Related Links:

Abstract The deep and durable antitumor effects of antibody-based immunotherapies such as immune checkpoint inhibitors (ICIs) have revolutionized oncology and transformed the therapeutic landscape for many cancers. Several anti-programmed death receptor 1 and anti-programmed death receptor ligand 1 antibodies have been approved for use in advanced solid tumors, including melanoma, non-small cell lung cancer (NSCLC), bladder cancer, and other cancers. ICIs are under development across many tumor types and preliminary results are compelling. However, ICIs have been associated with severe immune-related adverse event...
Source: Clinical Cancer Research - Category: Cancer & Oncology Authors: Tags: Clin Cancer Res Source Type: research
Purpose of review To review the current literature concerning the intravesical treatment of nonmuscle invasive bladder cancer. Recent findings Bladder cancer is a high prevalent disease. Despite the recognized efficacy of traditional intravesical therapies, the best treatment strategy still needs to be found. Improvement in bladder cancer research lead to develop new intravesical agents and drug delivery systems for nonmuscle invasive bladder cancer tumours. Moreover, the emerging knowledge of bladder cancer immune profile strongly improves and provides new available treatment strategies. Summary The future of nonm...
Source: Current Opinion in Urology - Category: Urology & Nephrology Tags: SPECIAL COMMENTARY Source Type: research
Discussion MDSCs violently emerge in pathological conditions in an attempt to limit potentially harmful immune and inflammatory responses. Mechanisms supporting their expansion and survival are deeply investigated in cancer, in the perspective to reactivate specific antitumor responses and prevent their contribution to disease evolution. These findings will likely contribute to improve the targeting of MDSCs in anticancer immunotherapies, either alone or in combination with immune checkpoint inhibitors. New evidence indicates that the expansion of myeloid cell differentiation in pathology is subject to fine-tuning, as its...
Source: Frontiers in Immunology - Category: Allergy & Immunology Source Type: research
Michal Yalon1†, Amos Toren1,2†, Dina Jabarin2, Edna Fadida3, Shlomi Constantini3 and Ruty Mehrian-Shai1* 1Pediatric Hemato-Oncology, Edmond and Lilly Safra Children's Hospital and Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel 2The Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel 3Department of Pediatric Neurosurgery, Dana Children's Hospital, Tel-Aviv-Sourasky Medical Center, Tel Aviv, Israel Pediatric brain tumors are the most common solid tumor type and the leading cause of cancer-related death in children. The immune system plays an important r...
Source: Frontiers in Oncology - Category: Cancer & Oncology Source Type: research
Conclusions Several model systems are now available to characterize the MSC-tumour interplay in the TME. These offer early promise in establishing robust preclinical platforms for the identification of crucial molecular pathways and for the assessment of clinical efficacy of novel drugs to inhibit cancer development and progression. However, selection of the right model for a given study should be shaped on the purpose, and should also consider fixed biological, biochemical, and biophysical parameters according to the specific tumour type. Finally, in order to get reliable and useful results to be translated to the clinic...
Source: Frontiers in Oncology - Category: Cancer & Oncology Source Type: research
In conclusion, we showed hypermethylation of CpGs as a novel mechanism of action for DNMTi agents and identified 638 hypermethylated molecular targets (CpGs) common to decitabine and azacytidine therapy. These novel results suggest that hypermethylation of CpGs should be considered when predicting the DNMTi responses and side effects in cancer patients. Introduction DNA methyltransferase inhibitors (DNMTi) are widely used as chemical tools for hypomethylating the genome, with an aim to understand the role of DNA methylation in multiple processes (e.g., X-chromosome inactivation and DNA imprinting) and as an anti-ca...
Source: Frontiers in Pharmacology - Category: Drugs & Pharmacology Source Type: research
In this study, T cells deficient in TRAF6 display enhanced T cell activation, CD28-indpendent stimulation and resistance to Treg cell-mediated suppression (176). Although TLR signaling can promote T cell resistance to Treg cells, the precise molecular mechanism remains yet to be elucidated. It is worth noting that TLR stimulation of T cells increases cytokine production (173, 177), thus future studies should delineate the effect of TLR-MyD88 signaling vs. subsequently induced cytokines in generating resistance to Treg cells. Lastly, it is also crucial to evaluate the effect of TLR signaling on regulatory T cells which also...
Source: Frontiers in Oncology - Category: Cancer & Oncology Source Type: research
This study was supported by the Shanghai Sailing Program [grant number 17YF1425200, 2017]; Chinese National Natural Science Funding [grant number 81702249, 2017]; Science and Technology Commission of Shanghai Municipality [grant number 17511103403, 2017]; The funder has no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. Conflict of Interest Statement The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. Acknowledgments We acknowledge the ex...
Source: Frontiers in Oncology - Category: Cancer & Oncology Source Type: research
In conclusion, osmotic burst of inflated complement-damaged cells may occur, but these bursts are most likely a consequence of metabolic collapse of the cell rather than the cause of cell death. The Complement Cell Death Mediator: A Concerted Action of Toxic Moieties Membrane pores caused by complement were first visualized by electron microscopy on red blood cell membranes as large ring structures (22). Similar lesions were viewed on E. coli cell walls (23). Over the years, ample information on the fine ultrastructure of the MAC that can activate cell death has been gathered (24) and has been recently further examined (...
Source: Frontiers in Immunology - Category: Allergy & Immunology Source Type: research
Conclusion: These new findings indicated that the CCL2/CCR2 axis promoted the progression of SACC cells via recruiting and reprogramming TAMs. Targeting TAMs by blocking the CCL2/CCR2 axis might be a prospective strategy for SACC therapy. Introduction Salivary adenoid cystic carcinoma (SACC) is one of the most commonly diagnosed salivary gland malignancies, accounting for about 10% of all salivary gland neoplasms (1, 2). The typical characteristics of SACC include the recurrent growth, aggressive invasion, hematogenous metastasis, and chemotherapy refractory (2–4). Despite the great efforts paid in the treatm...
Source: Frontiers in Oncology - Category: Cancer & Oncology Source Type: research
More News: Bladder Cancer | Cancer | Cancer & Oncology | Cancer Therapy | Immunotherapy