Recurrent functional misinterpretation of RNA-seq data caused by sample-specific gene length bias

by Shir Mandelboum, Zohar Manber, Orna Elroy-Stein, Ran Elkon Data normalization is a critical step in RNA sequencing (RNA-seq) analysis, aiming to remove systematic effects from the data to ensure that technical biases have minimal impact on the results. Analyzing numerous RNA-seq datasets, we detected a prevalent sample-specific length effect that leads to a strong association between gene length and fold-change estimates between samples. This stochastic sample-specific effect is not corrected by common normalization methods, including reads per kilobase of transcript length per million reads (RPKM), Trimmed Mean of M values (TMM), relative log expre ssion (RLE), and quantile and upper-quartile normalization. Importantly, we demonstrate that this bias causes recurrent false positive calls by gene-set enrichment analysis (GSEA) methods, thereby leading to frequent functional misinterpretation of the data. Gene sets characterized by markedly short genes (e.g., ribosomal protein genes) or long genes (e.g., extracellular matrix genes) are particularly prone to such false calls. This sample-specific length bias is effectively removed by the conditional quantile normalization (cqn) and EDASeq methods, which allow the integration of gene length a s a sample-specific covariate. Consequently, using these normalization methods led to substantial reduction in GSEA false results while retaining true ones. In addition, we found that application of gene-set tests that take into account ...
Source: PLoS Biology: Archived Table of Contents - Category: Biology Authors: Source Type: research
More News: Biology | Genetics | Statistics