Incorporation of one N-glycosylation-deficient subunit within a tetramer of HCN2 channel is tolerated

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are glycoproteins N-glycosylated at a specific asparagine residue in the S5-S6 linker region. Previous reports suggested that N-glycosylation-deficient HCN2 N380Q (NQ) channels fail to properly target to the plasma membrane and are unable to form functional ion channels. HCN channels are known to homo- and hetero-oligomerize and it is not known whether HCN2-NQ subunits can oligomerize with wild type (wt) N-glycosylated subunits to form a tetrameric assembly. In the present study, homomeric NQ-mutant resulted in no current, cRNA titration experiments controlling the amount of wt-to-NQ injected into Xenopus oocytes indicated that the observed currents were consistent with a model where presence of a single nonglycosylated subunit in a tetrameric oligomer is tolerated forming functional channels. The activation voltage-dependence described by half-activation voltage and slope factor, and the reversal potential of the wt-NQ oligomeric channels were identical to the wt only tetrameric channels. Further incorporation of the nonglycosylated subunit rendered the channels nonconductive or not incorporated into the plasma membrane.
Source: NeuroReport - Category: Neurology Tags: Cellular, Molecular and Developmental Neuroscience Source Type: research
More News: Brain | Neurology | Study