A comparative study of two graphene based elastomeric composite sensors

Publication date: Available online 11 September 2019Source: Polymer TestingAuthor(s): Sensen Han, Qingshi Meng, Aron Chand, Shuo Wang, Xiaodong Li, Hailan Kang, Tianqing LiuAbstractFlexible and stretchable multifunctional electronics is expected to be one of the most active research areas in the next decade. In this work, we fabricate graphene based flexible film sensors using two different matrices; polydimethylsiloxane (PDMS) and epoxy. A graphene platelet (GnP) refers to a nanosheet that consists of a few stacked graphene layers, mostly below ∼10 nm in thickness. The mechanical, electrical and thermal properties of the fabricated composite films were evaluated. The morphology showed a good dispersibility of GnPs into the PDMS and epoxy matrices. The percolation threshold for GnP/PDMS and GnP/epoxy composite film was achieved at 3.19 vol% and 1.08 vol%, respectively. The fabricated composite films showed improvements in thermal conductivity for GnP/PDMS and GnP/epoxy composite film by 147% and 444%, respectively. The Young's modulus for GnP/epoxy system showed a significant increase by 1344% as compared to GnP/PDMS system, whose increment was by 144%. Upon pressure implication, bending and torsional deformation, GnP/PDMS system demonstrated a better electrical response and flexibility and simultaneously, showed a good stretchability by producing maximum strain up to 25%. The GnP/PDMS system is sensitive to temperature in a wide temperature range (−25 °C–163â€...
Source: Polymer Testing - Category: Chemistry Source Type: research