Adipose-derived stromal cell secretome disrupts autophagy in glioblastoma

AbstractMesenchymal stromal cells (MSCs) are frequently recruited to tumor sites to play a part in the tumor microenvironment (TME). However, their real impact on cancer cell behavior remains obscure. Here we investigated the effects of human adipose-derived stromal cell (hADSC) secretome in autophagy of glioblastoma (GBM), as a way to better comprehend how hADSCs influence the TME. GBM U-87 MG cells were treated with conditioned medium (CM) from hADSCs and autophagic flux was evaluated. hADSC CM treatment blocked the autophagic flux in tumor cells, as indicated by the accumulation of autophagosomes in the cytosol, the high LC3-II and p62/SQSTM1 protein levels, and the lack of increase in the amount of acidic vesicular organelles. These effects were further detected in other GBM cell lines tested and also in co-cultures of hADSCs and U-87 MG. hADSC CM did not compromise lysosomal acidification; however, it was able to activate mTORC1 signaling and, as a consequence, led to a decrease in the nuclear translocation of TFEB, a master transcriptional regulator of lysosomal biogenesis and autophagy, thereby contributing to a defective autophagic process. hADSCs secrete transforming growth factor beta 1 (TGF β1) and this cytokine is an important mediator of CM effects on autophagy. A comprehensive knowledge of MSC roles in tumor biology is of great importance to shed light on the complex dialog between these cells and to explore such interactions therapeutically. The present result...
Source: Journal of Molecular Medicine - Category: Molecular Biology Source Type: research